Analysis 1
 10 January 2024

Warm-up: If $u=\sin (x)$, then

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=? \quad \mathrm{~d} u=? \quad \mathrm{~d} x=?
$$

Indefinite inkegrals

$\int f(x) \mathrm{d} x$ describes all the anti-derivatives of a function.
Example: $\int \sin (3 x) \mathrm{d} x=\frac{-1}{3} \cos (3 x)+C$

Definite inkegrals

$\int_{a}^{b} f(x) \mathrm{d} x$ is the "signed area" under the graph $y=f(x)$ from $x=a$ to b. Instead of using area formulas, we often calculate this using the FTC.

The Fundamental Theorem of Calculus

If f is continuous then

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a),
$$

where $F(x)$ is any function for which $F^{\prime}(x)=f(x)$.

The subtraction on the right can also be written $\left.F(x)\right|_{x=a} ^{x=b}$ or $[F(x)]_{x=a}^{x=b}$.

Example:

$$
\begin{aligned}
\int_{-5}^{4} \frac{1}{3} x^{2} d x & =\left.\frac{1}{9} x^{3}\right|_{x=-6} ^{x=4} \\
& =\frac{1}{9}(4)^{3}-\frac{1}{9}(-6)^{3} \\
& =\frac{64}{9}-\frac{-126}{9} \\
& =\frac{189}{9} \\
& =21
\end{aligned}
$$

This is

$$
F(b)-F(a)
$$

u-substitution

When we see a function and its derivative in a certain configuration, we can re-write an integral using "substitution".

- As a general formula, we have

$$
\int f(g(x)) g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u, \quad \text { where } u=g(x)
$$

but examples may be easier to understand than this formula.

- We often use u as the new variable of integration, so this method is also called "u-substitution".

$$
\int\left(x^{2}+5\right)^{8}(2 x) d x=\int u^{8} d u=\frac{1}{9} u^{9}+C=\frac{1}{9}\left(x^{2}+6\right)^{9}+C
$$

$$
u=x^{2}+6
$$

dus

$$
\frac{d x}{d x}=2 x
$$

$$
d u=2 x d x
$$

Task 1: Find $\int \frac{24 x}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$.
Using $u=4 x^{2}-1, \ldots$
Answer: $6 \sqrt{4 x^{2}-1}+C$

Task 2: Calculate $\int_{1 / 2}^{(\sqrt{5}) / 2} \frac{24 x}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$..
Option 1: Using the final answer to the previous
Cask, this is $\left.6 \sqrt{4 x^{2}-1}\right|_{x=1 / 2}=\ldots$

Option 2: Change x-values into u-values at kop and
bottom of integral: $\int_{0}^{4} 3 u^{-1 / 2} d u=\left.6 u^{1 / 2}\right|_{u=0} ^{u=4}=12$.

Task 3: Find $\int_{0}^{1} 2\left(x^{2}+3\right)^{2} d x=\int_{0}^{1}\left(2 x^{4}+12 x^{2}+18\right) d x$
Answer: 22.4 NOT U-SUB!

Task 4: Evaluate $\int_{1}^{7} \frac{x}{x^{2}+1} \mathrm{~d} x$.
Answer: $\frac{1}{2} \ln (25)$, or $\ln (5)$

Area between curves

Previously we defined $\int_{a}^{b} f(x) \mathrm{d} x$ as the area between $y=f(x)$ and the x-axis with $a \leq x \leq b$.

If $f(x) \leq g(x)$ for all $a \leq x \leq b$ then the area between the curves $y=f(x)$ and $y=g(x)$ with $a \leq x \leq b$ is

$$
\int_{a}^{b}(g(x)-f(x)) \mathrm{d} x .
$$

Example: Find the area of the region bounded by the curves $\frac{y=\frac{x}{3}}{\text { bottom }}$ and $\frac{x=3 y^{2}}{\text { top }}$.

$$
\begin{aligned}
\text { Area }=\int_{\text {left }}^{\text {right }}(\text { kop }- \text { boltom }) d x & =\int_{0}^{3}\left(\frac{1}{\sqrt{3}} x^{1 / 2}-\frac{1}{3} x\right) d x \\
& =\ldots=\frac{1}{2}
\end{aligned}
$$

Area between curves

The area of a shape with $a \leq x \leq b$ and with curves on the top and bottom is

$$
\int_{a}^{b}(\operatorname{Top}(x)-\operatorname{Bottom}(x)) \mathrm{d} x .
$$

The area of a shape with $c \leq y \leq d$ and with curves on the left and right is

$$
\int_{c}^{d}(\operatorname{Right}(y)-\operatorname{Left}(y)) \mathrm{d} y .
$$

For some shapes, both methods are possible!

Example: Find the area of the region bounded by the curves $\frac{y=\frac{x}{3}}{\text { right }}$ and $\frac{x=3 y^{2}}{\text { left }}$.

$$
\begin{aligned}
\text { Area }=\int_{\text {bottom }}^{\text {top }}(\text { right }- \text { Left }) d x & =\int_{0}^{1}\left(3 y-3 y^{2}\right) d y \\
& =\ldots=\frac{1}{2}
\end{aligned}
$$

